
1
1

NetLogger

The NetLogger Toolkit

Data Intensive Distributed Computing Group
Lawrence Berkeley National Laboratory

Brian L. Tierney
Dan Gunter

NetLogger

Overview

• The Problem
– When building distributed systems, we often

observe unexpectedly low performance
• the reasons for which are usually not obvious

– The bottlenecks can be in any of the following
components:

• the applications
• the operating systems
• the disks or network adapters on either the sending or

receiving host
• the network switches and routers, and so on

• The Solution:
• Highly instrumented systems with precision timing

information and analysis tools

2
2

NetLogger

Bottleneck Analysis

• Distributed system users and developers often
assume the problem is network congestion
– This is often not true

• In our experience tuning distributed applications,
performance problems are due to:
– network problems: ~40%
– host problems: ~20%
– application design problems/bugs: ~40%

• 50% client , 50% server

• Therefore it is equally important to instrument the
applications

NetLogger

NetLogger Toolkit

• We have developed the NetLogger Toolkit (short for
Networked Application Logger), which includes:

– tools to make it easy for distributed applications to log
interesting events at every critical point

– tools for host and network monitoring

• The approach is novel in that it combines network, host,
and application-level monitoring to provide a complete
view of the entire system.

• This has proven invaluable for:

– isolating and correcting performance bottlenecks

– debugging distributed applications

3
3

NetLogger

NetLogger Components

• NetLogger Toolkit contains the following components:
– NetLogger message format
– NetLogger client library (C, C++, Java, Perl, Python)
– NetLogger visualization tools
– NetLogger host/network monitoring tools

• Source code and binaries are available at:
– http://www-didc.lbl.gov/NetLogger/

• Additional critical component for distributed applications:
– NTP (Network Time Protocol) or GPS host clock is

required to synchronize the clocks of all systems

NetLogger

Key Concepts

• NetLogger visualization tools are based on time
correlated and/or object correlated events.

• NetLogger client libraries include:
– precision timestamps (default = microsecond)
– ability for applications to specify an “object ID” for related

events, which allows the NetLogger visualization tools to
generate an object “lifeline”

4
4

NetLogger

NetLogger Message Format

• We are using the IETF-developed Universal Logger
Message (ULM) format:

• a list of “field=value” pairs
• required fields: DATE, HOST, PROG, and LVL

—DATE = YYYYMMDDHHSS.SSSSSS
—PROG: program name
—LVL is the severity level (Emergency, Alert, Error, Usage, etc.)

• followed by optional user defined fields
• see: http://www-didc.lbl.gov/NetLogger/draft-abela-ulm-05.txt

• NetLogger adds this required fields:
• NL.EVNT, a unique identifier for the event being logged

—e.g.: SERVER_IN, VMSTAT_USER_TIME,
NETSTAT_RETRANSSEG

NetLogger

NetLogger Message Format

• Sample NetLogger ULM event:
DATE=19980430133038.055784 HOST=foo.lbl.gov
PROG=testprog LVL=Usage NL.EVNT=SEND_DATA
SEND.SZ=49332

– This says program named testprog on host foo.lbl.gov
performed event named SEND_DATA, size = 49332
bytes, at the time given

• User-defined data elements (any number) are used to
store information about the logged event - for example:

• NL.EVNT=SEND_DATA SEND.SZ=49332
—the number of bytes of data sent

• NL.EVNT=NETSTAT_RETRANSSEGS NS.RTS=2
—the number of TCP retransmits since the previous event

5
5

NetLogger

When to use NetLogger

• When you want to:
– do performance/bottleneck analysis on distributed

applications
– determine which hardware components to upgrade

to alleviate bottlenecks
– do real-time or post-mortem analysis of applications
– correlate application performance with system

information (ie: TCP retransmission's)
• works best with applications where you can follow a

specific item (data block, message, object) through the
system

NetLogger

When NOT to use NetLogger

• Analyzing massively parallel programs (e.g.: MPI)
– Current visualization tools don’t scale beyond

tracking about 20 types of events at a time

• Analyzing many very short events
– system will become overwhelmed if too many

events
– we typically use NetLogger to monitor events that

take > .5 ms
– e.g: probably don’t want to use to instrument the

UNIX kernel

6
6

NetLogger

NetLogger API

• NetLogger Toolkit includes application libraries for
generating NetLogger messages
– Can send log messages to:

• file
• host/port (netlogd)
• syslogd
• memory, then one of the above

• C, C++, Java, Fortran, Perl, and Python APIs are
currently supported

NetLogger

netlogd

• Use netlogd to collect NetLogger messages at a central
host
– use to avoid the need to sort/merge several log files

from several places

netlogd
Network 1

Network 2
Network 3

NetLogger data

7
7

NetLogger

Logging to Memory

• The NetLogger client library includes an option to buffer log
messages in memory:
– useful if monitoring bursts of events with a duration < 1 ms

• Flushing of events to disk or network will occur:
– automatically when specified memory block full
– when calling NetLoggerFlush()
– when calling NetLoggerClose()

• Size of memory buffer specified by NL_MAX_BUFFER in
netlogger.h
– default = 10,000 messages (typical message size is 128

bytes)

NetLogger

NetLogger API

• Only 6 simple calls:
– NetLoggerOpen()

• create NetLogger handle

– NetLoggerWrite()
• get timestamp, build NetLogger message, send to destination

– NetLoggerGTWrite()
• must pass in results of Unix gettimeofday() call

– NetLoggerFlush()
• flush any buffered message to destination

– NetLoggerSetLevel()
• set ULM severity level

– NetLoggerClose()
• destroy NetLogger handle

8
8

NetLogger

NetLogger Open Call

NLhandle *lp = NULL;
lp = NetLoggerOpen(char *program_name, char *dest_url, int flags);

• program_name: name to be inserted into ULM “program” field
• dest_url: destination of log file; valid URLs formats include:

– file://path/file
– x-netlog://host:port
– x-syslog://localhost

• flags: bitwise “or” of the following:
– NL_MEM: buffer in memory
– NL_ENV: destination must be specified by the NL_DEST_ENV

environment variable; NetLogger is off if this variable not found

NetLogger

NetLoggerOpen() shell
environment variables

• Enable/Disable logging:
setenv NETLOGGER_ON {true, on, yes, 1}: do logging
setenv NETLOGGER_ON {false, off, no, 0}: do not do logging

• Log Destination: setenv NL_DEST_ENV logging destination
 Examples:
 setenv NL_DEST_ENV file://tmp/netlog.log

 write log messages to file /tmp/netlog.log
 setenv NL_DEST_ENV x-netlog://loghost.lbl.gov

 send log messages to netlogd on host loghost.lbl.gov, default port
 setenv NL_DEST_ENV x-netlog://loghost.lbl.gov:6006
 send log messages to netlogd on host loghost.lbl.gov, port 6006

• NL_DEST_ENV overrides the URL passed in via the NetLoggerOpen()

call.

9
9

NetLogger

Typical Use

• Using the environment variables, application and middleware
developers don’t have to worry about command line arguments
or middleware APIs to enable/disable logging.

• Example: middleware includes the following call:
NetLoggerOpen(“globus”, NULL, NL_ENV);
– Default behavior: logging is off
– If user sets “NL_DEST_ENV” to a valid log destination, then logging

will be turned on

• Example: client includes the following call:
NetLoggerOpen(“my_app”, “file://tmp/myapp.log”, 0);
– Default behavior: logging is on

– If user sets: NETLOGGER_ON = off: Logging is disabled

NetLogger

NetLogger Write Call

• Creates and Writes the log event:

NetLoggerWrite(nl, “EVENT_NAME”,
“EVENTID=%d F2=%d F3=%s F4=%.2f”, id,
user_data, user_string, user_float);

– timestamps are automatically done by library

– the “event name” field is required, all other fields are
optional

– this call is thread-safe: automatically does a mutex lock
around write call (compile time option)

• Example:

NetLoggerWrite(nl, “HTTPD.START_DISK_READ”,
“HTTPD.FNAME=%s HTTPD.HOST=%s”, fname,
hostname);

10
10

NetLogger

Sample NetLogger Use

 lp = NetLoggerOpen(progname,
x-netlog://loghost.lbl.gov, 0);

while (!done)
{

 NetLoggerWrite(lp, "EVENT_START",
"TEST.SIZE=%d", size);

 /* perform the task to be monitored */
 done = do_something(data, size);

 NetLoggerWrite(lp, "EVENT_END");
}
NetLoggerClose(lp);

NetLogger

NetLogger Event “Life Lines”

11
11

NetLogger

Event ID

• In order to associate a group of events into a “lifeline”,
you must assign an event ID to each NetLogger event

• Sample Event Ids
– file name
– block ID
– frame ID
– user name
– host name
– combination of the above
– etc.

NetLogger

Sample NetLogger Use with
Event IDs

lp = NetLoggerOpen(progname, NULL, NL_ENV);
for (i=0; i< num_blocks; i++) {

NetLoggerWrite(lp, “START_READ”,
“BLOCK_ID=%d BLOCK_SIZE=%d”, i, size);

read_block(i);
NetLoggerWrite(lp, “END_READ”,

“BLOCK_ID=%d BLOCK_SIZE=%d”, i, size);
NetLoggerWrite(lp, “START_PROCESS”,

“BLOCK_ID=%d BLOCK_SIZE=%d”, i, size);
process_block(i);
NetLoggerWrite(lp, “END_PROCESS”,

“BLOCK_ID=%d BLOCK_SIZE=%d”, i, size);
NetLoggerWrite(lp, “START_SEND”,

“BLOCK_ID=%d BLOCK_SIZE=%d”, i, size);
send_block(i);
NetLoggerWrite(lp, “END_SEND”,

“BLOCK_ID=%d BLOCK_SIZE=%d”, i, size);
}
NetLoggerClose(lp);

12
12

NetLogger

NetLogger Host/Network Tools

• Wrapped UNIX network and OS monitoring tools to log
“interesting” events using the same log format
– netstat (TCP retransmissions, etc.)
– vmstat (system load, available memory, etc.)
– iostat (disk activity)
– ping

• These tools have been wrapped with Perl programs which:
– parse the output of the system utility
– build NetLogger messages containing the results

NetLogger

Sample NetLogger System
Monitoring Tool

• Example: nl_vmstat -t 60 -d 5000 -m 2 logger.lbl.gov
– Perl program will exec vmstat every 5 seconds for 1

hour, and send the results to netlogd on host
logger.lbl.gov

– Generates the following information:
• CPU usage by User
• CPU usage by System

• NetLogger Messages:
DATE=19990706125055.891620 HOST=portnoy.lbl.gov

PROG=nl_vmstat LVL=Usage NL.EVNT=VMSTAT_USER_TIME
VMS.VAL=9

DATE=19990706125055. 891112 HOST=portnoy.lbl.gov
PROG=nl_vmstat LVL=Usage NL.EVNT=VMSTAT_SYS_TIME
VMS.VAL=5

13
13

NetLogger

NetLoggerized tcpdump

• Precise real-time monitoring of TCP events on a per stream bases
– TCP retransmits
– TCP window size

• Example:
– tcpdump -A tcp and host piggy.ittc.ukans.edu and port 23

• Generates the following NetLogger data:
– DATE=20000419171039.78654 HOST=piggy.ittc.ukans.edu PROG=tcpdump

LVL=ErrorNL.EVNT=TCPD_REXSEG SN=145
SRC_HOST=falcon.cc.ukans.edu SRC_PORT=23
DST_HOST=piggy.ittc.ukans.edu DST_PORT=2800

• http://www.ittc.ukans.edu/projects/enable/tcpdump

NetLogger

NetLogger Visualization Tools

• Exploratory, interactive analysis of the log data has proven
to be the most important means of identifying problems

– this is provided by nlv (NetLogger Visualization)

• nlv functionality:
– can display several types of NetLogger events at once
– user configurable: which events to plot, and the type of

plot to draw (lifeline, load-line, or point)
– play, pause, rewind, slow motion, zoom in/out, and so

on
– nlv can be run post-mortem or in real-time

• real-time mode done by reading the output of netlogd as it is
being written

14
14

NetLogger

NLV Graph Types

• nlv supports graphing of “points”, load-lines, and
lifelines

NetLogger

NLV Screenshot

Menu bar

Scale for load-line/
pointsEvents

Legend

Zoom window
controls

Zoom box

Playback controls

Window size
Max window size

Zoom-box actions

Playback speed

Summary
line

Time axis

You are
here

Title

15
15

NetLogger

NLV Configuration

• NLV is very flexible, with many options settable in the
configuration file.

• Format:
eventset +/-eventset_name {
 { type <line,point,load> }
 { id { list of ULM field names used to determine which
NetLogger messages get grouped into the same graph
primitive } }

 { group { list of ULM field names which will be mapped to
the same color } }

 { val field_name min_val max_val }
 { annotate { list of field names to display in with annotate
option } }

 { events { list of all event ID’s in this lifeline } }
}

• Each nlv graph object needs to be defined by an “eventset”
• Events and event-sets both use "+" and "-" to indicate default

(i.e. on startup) visibility

NetLogger

Example NLV Configuration

display vmstat info as a “loadline”
eventset +VMSTAT {
{ type load }
loadline constructed from messages with the same HOST and NL.EVNT
{ id { HOST NL.EVNT } }
messages with the same HOST get the same color
{ group HOST }
#list of NL.EVNT values in this set_
{ events { +VMSTAT_SYS_TIME +VMSTAT_USER_TIME } }
}

display netstat TCP retransmits as a “point”
eventset +NETSTAT {
{ type point }
ignore values outside the range 0 to 999
{ val NS.VAL 0.0 999.0 }
point constructed from messages from the same HOST and PROG
{ id { HOST PROG } }
messages with the same HOST get the same color
{ group HOST }
{ events { +NETSTAT_RETRANSSEGS } }
}

16
16

NetLogger

Example NLV Configuration

display server data as a “lifeline”
eventset +SERVER_READ {
{ type line }

lifeline constructed from messages from the same client
and server

{ id { CLIENT_HOST DPSS.SERV } }

messages with the same DPSS.SERV get the same color
{ group DPSS.SERV }

{ events {
+APP_SENT
+DPSS_SERV_IN
+DPSS_START_READ
+DPSS_END_READ
+DPSS_START_WRITE
+APP_RECEIVE }

}
}

NetLogger

How to Instrument Your
Application

• You’ll probably want to add a NetLogger event to the
following places in your distributed application:
– before and after all disk I/O
– before and after all network I/O
– entering and leaving each distributed component
– before and after any significant computation

• e.g.: an FFT operation

– before and after any significant graphics call
• e.g.: certain CPU intensive OpenGL calls

• This is usually an iterative process
– add more NetLogger events as you zero in on the

bottleneck

17
17

NetLogger

Does NetLogger affect
application performance?

• Only if you use it incorrectly or log too much
• There are several things to be careful of when doing this

type of monitoring:
– If logging to disk, don’t log to a nfs mounted disk

• best to log to /tmp, which may actually be RAM (Solaris)

– Probably don’t want to send log messages to a slow
(i.e.: 10BT) or congested network, as you’ll just make
it worse

• log to a local file instead

• Sample NetLoggerWrite Performance: 100000 calls/sec
– can make 1000 NetLoggerWrite calls / sec and only

effect your application by 1%

NetLogger

NetLogger Case Studies

18
18

NetLogger

Example: HPSS Storage Manager
Application

• NetLogger was used to test and verify the results of a
Storage Access Coordination System (STACS) by
LBNL’s Data Management Group

• STACS is designed to optimize the use of a disk
cache with an HPSS Mass Storage system, and tries
to minimize tape mount requests by clustering related
data on the same tape

• NetLogger was used to look at:
– per-query latencies
– to show that subsequent fetches of spatially

clustered data "hit" in the cache.
• (http://gizmo.lbl.gov/sm/)

NetLogger

STACS Instrumentation Points

Client

Cache HPSS
Tape Storage

Monitoring Points:
A) request arrives at HPSS
B) start transfer from tape
C) tape transfer finished
D) file available to client
E) file retrieved by client
F) file released by client

19
19

NetLogger

NLV for STACS: Tracking File
Requests

NetLogger

Tracking Files and System Performance

20
20

NetLogger

Example: Parallel Data Block
Server

• The Distributed Parallel Storage Server (DPSS)
– provides high-speed parallel access to remote data
– Unique features of the DPSS:

• On a high-speed network, can actually access remote
data faster that from a local disk

—70 MB/sec (DPSS) vs 22 MB/sec (local disk)

• Only need to send parts of the file currently required over
the network

—e.g.: client may only need 100 MB from a 2 GB data set
—analogous to http model

• NetLogger was used for performance tuning and
debugging of the DPSS

NetLogger

DPSS Cache Architecture

Client Application

Parallel
Disks

DPSS Server

Parallel
Disks

DPSS Server

Parallel
Disks

DPSS Server

DPSS Master

data blocks

data blocks

data blocks
Logical Block

Requests

? logical to physical
block lookup

? access control
? load balancing

Physical Block
Requests

21
21

NetLogger

NetLogger Results for the DPSS

NetLogger

NetLogger Results for the DPSS

22
22

NetLogger

NetLogger Results for the DPSS
over a WAN

NetLogger

DPSS Performance: Used NetLogger
for performance tuning

Storage Cluster
(DPSS)

Total Throughput (single dataset to a single cluster application):
570 Mbits/sec (71 MB/sec) on 32 data streams (17 Mbits/sec/stream)

Compute Cluster
(8 nodes)

Berkeley Lab:
.75 TB, 4 server

DPSS
Sandia Livermore Lab

 Linux Cluster (CPlant)

NTON Oakland
POP

OC-48OC-12

1000 BT1000 BT

23
23

NetLogger

Example: NLV of DPSS with a
HENP client

NetLogger

Example: Babar data analysis: 2
nodes with Objectivity Error

24
24

NetLogger

Example: Matisse Project

NetLogger

Example: Combined Host and
Application Monitoring

 VMSTAT_FREE_MEMORY

 VMSTAT_SYS_TIME

 VMSTAT_USER_TIME

MPLAY_START_READ_FRAME

MPLAY_END_READ_FRAME

MPLAY_START_PUT_IMAGE

MPLAY_END_PUT_IMAGE

TCPD_RETRANSMITS

310 311 312 313 314 315 316 317 318

dpss5.lbl.gov
dpss4.lbl.gov

dpss2.lbl.govmems.cairn.net
dpss3.lbl.gov

X

X

X

X

Time (seconds)

25
25

NetLogger

Example: NetLogger of ncftp
client

• ncftp client on a
10BT ethernet

• ncftp client on a
1000BT ethernet

NetLogger

Current/Future NetLogger Work

• Binary format (faster!)
• XML format (slower!!)
• Publish/Subscribe API

– Producer X
• NetLoggerPublish(“MONITORING_EVENT_NAME”, ...)

– Consumer Y
• NetLoggerSubscribe(X, “MONITORING_EVENT_NAME”, ..)

26
26

NetLogger

 Getting NetLogger

• Source code and binaries are available at:
– http://www-didc.lbl.gov/NetLogger

• Client libraries run on all Unix platforms

• Solaris, Linux, and Irix versions of nlv are currently
supported

NetLogger

For More Information

Email:bltierney@lbl.gov

http://www-didc.lbl.gov/NetLogger/
– download NetLogger components
– tutorial
– user guide

http://www-didc.lbl.gov/tcp-wan.html
– links to all network tools mentioned here
– sample TCP buffer tuning code, etc.,

